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ANALYSIS OF THE CORRECINESS OF A TWO-TEMPERATURE
COMPUTATION METHOD

I. V. Goncharov and V. L. Mikov UDC 536.2.01

Two methods of determining the heat transfer coefficient between components arse
compared on the basis of an exact solution of a model problem.

A multitemperature method [1-4] whose general principles are elucidated in [1] is used
extensively at this time to model heat transport processes in heterogeneous media (granular,
laminar, fibrous). This approach is based on taking the average of the thermophysical
parameters with respect to each component in a macrovolume element, which results in 1 sys-
tem of interrelated heat conduction equations. The connection between the heat flux »e-
tween the components and their mean temperatures for which the Henry law is utilized (1]

gii = a(T;—T)) (1)
must be established to close the system.

Two methods are known for determining a: the "correlation' [1] and the linear radial
heat flux methods [4, 5]. The problem of analyzing the correctness of the methods to de-
termine the heat transfer coefficient between components is posed in this paper.

Let us examine a model heat propagation problem in a bilaminar composite of regu.ar
structure under boundary conditions of the second kind. The representative section oi the
material is displayed in Fig. 1. The thermophysical characteristics of the material com-
ponents are considered independent of the temperature. Then we can write for an isolzted
section element

AiTicetra Toe=¢:Tee, i=1,2, (2)
T: {0, 2, x) =0, (2a)
— i Ti 2 om0 = qo (8),  AziTs 2l:—n= qn{f), (2b)
Tix=0, x=1, (2c)
— ATy x=AgsTo v, T, =Ty, x=0. (2d)
1. Two-Tempeiature Theory. Let us introduce the concept of the mean temperature over
a section T;::—%f-g Tdx. Then (2) can be converted into
i A: Ty oo —s T = wﬁillei_ ® i1 92
2i L 1,22 it g, 1 s Ly
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where ¢* = §,3lvm0= —AgyT1,xlx=0.

To close the system of heat conduction equations obtained, it is necessary to find the
dependence q* = f(T,, T,). The coefficient of heat transfer between components is determined
in the "correlation" method on the basis of stochastic heat conduction equations of a micro-
inhomogeneous medium, and
Ll hy

_oyy _ bbb
“ 2V Tt o (3)

is obtained in [1] for a bilaminar isotropic material, where %y is of the order of the char-
acteristic dimension of the micro-inhomogeneities.

The idea of a "linear approximation'" is proposed in {[5]. It consists of assuming a
linear dependence of the radial heat flux density on x, i.e., qix = Aj{(2z)x. Then by using
(2c) and (2d) and the assumption made we obtain

o j= 3hdg/(l Ay -+ Lohy) (4)

for the bilaminar isotropic material [5]. The equation €4) is refined in [4] for anisotropic
components

g = Shurhan/(lhxe 4 lohy)- (4a)

By using the "linear'" approach, the heat transfer coefficient between two coaxial cylinders
under ideal thermal contact can be determined

P 12hg,hgn (Re + R)) .
27 Bhya (Ry+ R)) Ry + Agy (Ry— Ry) (5R, + 3Ry)

Taking account of the thermal contact resistance between the components results in the ex-
pression

(4b)

G‘R:‘“(l + Reo)™. (4c)

Let us solve the system of equations (2) by the two-temperature method for the o de-
termined by (3) or (4). Applying the Laplace transform in time and the Fourier cosine trans-
form in z we have

Tip = Qu(ot + Aot + cop) T,
Tor = Qo+ Ay + c1p) I,
where

= CiCe [(P + ])2 - I‘J’Z]’ ] = 5 (azl -+ azz) -+ o,

", —a o  lyco— ey 12
Br= fp—2 22 L — RN a(l Lec) !
; - 201 C

[ 9 9 11520103 J ( it2>1 2) ’

a
Gy = 2_ (lzcz + 11(31) (11120162)_1, ‘[I) = [nn/HJZ’
w=ally+ L)L), a,;= hyles, i=1, 2,

o
Q= exp(—p) Qdt Q= gp—(—1)'gq.
0

To obtain the originals Tl, Tz, the inverse Laplace and Fourier transforms must be per-
formed for the transforms Typ, i = 1, 2. Let us consider that q, = const, q, = 0, A,; >

Az2; then we have

_ ‘B, . " . — A, '
ﬂzjm{&LHwL_ﬁq+%*gawﬂilﬂt;_q_
He, Ty Oy | aevd | V0 ] v
T ®
— exp [— wi] (——wL — } —g-} cos (’%?-) , i=1,2,
where
o eyt 1y a glidal, e
Bims g B g 0 TR
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w=y+p U={1—exp(—2ai@)/(20), A =2B;+ a,}.

2. Exact Solution. Applying the Laplace and Fourier transforms to the system 2) we
obtain

1

X

in transform space. The solution of the system (6), (2c¢) and (2d) can be represented in the
form (i, j =1, 23 i = j)

T ex = -+ 40 Ty =—0, Py i=1, 2 {6)

ﬂ“:p§i + (= ) QB sh (17 ) ch (VT (1 — ) V@7 hasf Ty
v
where
Y oL N 1 ek L0
Oxi Arhxa®rPe

g = he VE:’_ ch (VTPZ— l,)sh (V’CE; L) A gy V@: ch (V/‘_P; I,) sh G/‘i;; Iy).

Let us execute the inverse Laplace and Fourier transforms by noting that it is recommended
to perform them for a specific kind of Qp, because formulas for the general case of Qp can
only be written as a convolution. Let us consider that gqo = const, qn = 0, Az; > Ay,. We
use the theorem of expansion of the transforms [6] to obtain the Laplace originals. The
expression (7) is the ratio of generalized polynomials. To find the roots of the denomina-

tor we examine the equation p¢;¢,I, = 0. Its analysis shows that there are three groups of
simple roots:

1) Roots of the equations ¢4 = 0, i =1, 2;
2) Roots ppy, determinable from the equation
Axe@a ch{gely) sin(gals) — Mx181sh(gily) cos (g2l =0,
3) Roots pgp determinable from the equation
Maala €08 (ryly) sin (rely) + Ayyry cOs (roly) sin(ryl;) = 0,
where 72 = (P — Ptz i = 1. 2 @] = (@b — sy €5 = (p— G)/aes

Then p = 0 is a double root. As a result of the inverse transformations in t ani z we
have (i, j =1, 2; i # j)

{L_..(N_ 1)t Al Ul (—1y aide E Uho +
Cs [~ Vale fvinif)

A
1 . VI 3 ‘
o WYLy A WY L U ep (- pund) (8)
-+ 3H%ﬁ ( )‘p o= 3, exp {— puml) -+

m=1

+ (1) 2 LynUsn exp (— pk,,t)} cos (
k=1

niz \]
H)j’
where

b+l Ac = o Bt £ = Co (I; + o)

s — ] 3

41y €102

f_ B (= 1y (ﬁ g)
Vo= e+ 52, — & Kl el

; sin (rsols) €08 (730 (L — X)) _ o,
Uy = S lal) exp(—piof) (0, puo) = 5 0
Puo V oro (0, pro) w0 P ° dp

Ub=1as Ve; sh(Vesp L) ch (Verb (I —x)iTe(n, p=0),

*
p=—Pyq
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Fig. 1. Representative volume for a
bilaminar composite of regular struc-
ture: 1) first layer; 2) second lyaer;
H is the material thickness
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Fig. 2. Temperature distribution in material sections z =
z/H: 1) z = 03 2) 0.01; 3) 0.02; 4) 0.03; 5) 0.04; 6) 0.05 for
a) Ke (0); b) Ke (05 Ap; = 20 wW/(m-K)) T, K.

Ui sty sin (r5l5) cos (ri (1; — x)) o = Qi
kn = - » P T
" Prn (Pan — €29) (Pan — Qz2¥) Hp (11, Prm) Qi
Hp (I’L, pkn) == aH“ , Ah= (R’zl — Kzz)/’(lekﬂ)’
ap Br=—Pp g
Ul = sinl@h)ch(g (b —=x)  »_ shlgily) cos (g2(b—x)
* pnm%’xig% gzﬁp (ﬁ) ’ ) an?\-ngg glgp (ﬁ)

n,®) = '—;'” [cos (gal5) ch(gyly) (cals + cyly) 4 sh(gyly) sin(gale) X
Cy

X{ Aeagile . Axs8aly 1 + Ch(g1l1) sin (galy) + R cos (gals) X
Qxafs Q81 8 &1

=sh(g ), Lij= (s — ) Y— (¢ — ) pis-

The number Ay determines the quantity of roots pn, for each n.

To obtain the mean temperature <T;> over a component section, (8) must be integrated
within limits of the layer. We make numerical estimates for a material with the following
thermophysical characteristics: Ay =Ax; = 160 W/ (mK); Ayp = Ag, = 20 W/ (m-K); ¢, = ¢, =
3.23-10% J /(m®+K) and the geometric parameters %; = 0.4 mm; %, = 0.8 mm; H = 20 mm. Let
Ke(0) denote the set of parameters listed. We let Ke(0; f = y) denote a composite material
different from Ke(0) by the value of the parameter f = y. Let us give the thermal flux
density on the boundary q, = 107 W/m2.

Let us note that (8) is simplified for the selected thermophysical characteristics of
the components:

1) pyn (k =1, 2,..., n =0, 1, 2,...), pgn > 60, consequently, terms containing exp
(—pknt) become negligible for t ~ 1 sec;

2) Ap = 1 for all n < 200;
3 Ac =0, i=1, 2.
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Fig. 3. Absolute error of two-temperature models for mater-
ials: a) Ke(0); b) Ke (03 ¢; = 0.2 mm, ¢, = 1.0 nm), 8T, K;
t, sec.

On the basis of computations N = max (n) was selected equal to 200 which assures¢ an
accuracy on the order of 2%. Let us note that N is a function of the material thermcphysi-
cal and geometric characteristics.

The temperature distribution in different sections of a laminar material is displayed
in Fig. 2 at the times t = 0.1 sec for Ke(0) and Ke (0; Ay, = 20 W/ (m'K)), respectively.

The mean temperatures_of the components were computed by the two-temperature theory (5)
for the material Ke(0): (Tyi) by the "correlation' method (3) and (T13) by the linezr ap-
proximation (4). Since the maximal difference between the component temperatures will be
on the composite boundary [4] at the point z = 0, the approximate values were compared to
the exact value at this point.

Let us introduce 8T.; and 8Ty; characterizing the absolute error of the methods

8Tyy=<(Ti)> =T, Sy=(Ti>—Thy, i=1, 2

The results of comparing the methods for computing the temperature field of the material
Ke(0) are represented in Fig. 3a, and for the material Ke (0; 2; = 0.2 mm, £, = 1, 9 mm) in
Fig. 3b.

Analysis of the computation results shows that the "linear approximation' method is more
exact since it yields complete agreement with the exact solution for the component 1 for
t > 1.0 sec. The absolute error is ~10° for the less heat-conductive component 2 and it de-
pends weakly on the geometric dimensions of the component. The greatest error in the "linear
approximation' occurs at the initial stages of material heating when the radial thermal flux
density depends nonlinearly on the coordinate x. The reason for this is that only periphe-al zones
of the component take part in inter-component heat transfer in the initial heating stage.
As all the components become involved in the inter-component heat transfer, a temperture
profile is formed in its sections that is almost a linear approximation for qyy, which cor-
responds to a parabolic temperture distribution over the section of a laminar composite.

Therefore, an exact solution is obtained for the temperture field of a bilaminar com-
posite for constant heat flux at the boundary, on whose basis two methods of computing the
coefficient of heat transfer between the components are compared. It is shown that thie
“linear" radial heat flux method is more exact as compared with the 'correlation' metiod.

NOTATION

T, temperature; T, temperature averaged over the section; 8T, absolute error of —he
temperature; Ty, transform of the temperature; t, time; x, z, space coordinates; &, H. R,
geometric characteristics of the representative section; g, thermal flux density; qi._
thermal flux density from the i component to the j component; c, A, a) coefficients o vol-
ume specific heat, heat conductivity, and thermal diffusivity; a, heat transfer coeff:cient
between the components; Ry, contact thermal resistance factor; p, Laplace transform
parameter; n, Fourier cosine~transform parameter; ,xx = 8?/8x? comma before the subscripts
denotes differentiation with respect to the appropriate variable.
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